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Analysis of Waveguide Modes by Standingd

Wave Pattern Measurements”

H. B. DAVE~, STUDENT MEMBER, IRE

Summary—A method of analyzing a multimode transmission

system is described, which is based upon the measurement of mean-

square electric field along a line parallel to the waveguide axis.

Although the analysis given is for a rectangular waveguide, the

method has the advantage that it can readily be adapted to all

types of transmission structures.

lNTRODLTCTION

A

N ANALYSIS of the complex modal amplitudes on

waveguides, based upon measurement of the

transverse electric field, has been made by Ferrer

and Tomiyasu.l Since their method is based upon a

numerical Fourier analysis, it is not suitable for trans-

mission structures which involve nonsinusoidal trans-

verse field functions. The method described in the

present paper is free from this limitation. It depends on

the fact that the various propagating modes, in general,

have different phase velocities. Due to this dispersion,

the electric field measured along a line parallel to the

waveguide axis will show a modulation effect. From the

numerical Fourier transform analysis of the resultant

field pattern, one can arrive at values of various co-

efficients for several modal amplitudes.

a

THEORETICAL

Consider the expression for [ Eu [ z as a function of z in

rectangular waveguide.

inn-x
EU1 = Ku sin— cos ‘~y expj(d – ,BLz+ 8J

a

where

–jcoMC m7r
—— —.— for TE modes;

~, a

EVZ = y component of the electric field for a particular

mode 1;

~1 = phase constant
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z = distance along the waveguicle axis;

~z = initial phase difference.

The expression for &. applies both to TM.. and TEfi.

modes, so the phase velocities of these two modes will

be same and there will be degeneracy. For other modes,

~i’s are not only different but also are not simply related.

In the analysis given below, degenerate modes are

designated by a single number per pair, the electric field

being the vector sum of the individual fields.

(1)

A. Case of A Ybitrary Reelection

At a particular transverse site the y components of

incident electric fields are given by

‘Eu ~ = Al expj(d – ,f?Iz + 81)

~Eu2 = Az expj(d – ~zz + 8,)

. . . . . . . . . . . . .

QiUl = At expj(d. — ~t~ + 62).

The reflected fields are likewise given by

‘Ev, = B, expj(cd + fllz – 8,’)

‘Euz = B, expj(at + ~zz – 82’)

. . . . . . . . . . . . .

‘Evt = BL expj(ut + DLZ – al’). (2)

The factors.4 ~, .42, . . . , .B1, 32, etc., consist of multi-

plication of a weighing factor depending upon the probe

position and the type of mode and the maximum ampli-

tude of the electric field for the particular mode. It is

important that none of these weighing factors be zero,

otherwise that particular mode for which the weighing

factor is zero will not be detected. If the mode patterns

are known, one can always select an axis for probing

which will give a reasonable amplitude to each of the

modes of interest; e.g., for a rectangular waveguide

supporting TE1o, TEZO and TE30 modes, one should

avoid locating the probe axis at a distance of a/2, a/3,

2a/3 from the narrow face of the waveguide. If the mode

patterns on a new waveguide structure are totally un-

known, two or three series of probing in the longitudinal

direction will help in locating the most suitable axis.

Here lies the main advantage of this method, for at least

something can be found out about the unknown mode

patterns on a new waveguide structure, though actual

mode ratios cannot be found.

Equations similar to (1) and (2) can be written for the

x component of the electric field and similar analysis

can be carried through.
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Total electric fieldl in the y direction is given by

l?,= ~’EUL+ ~EvL

r

Al exp – j(plz – al) + BI expj(~lz – 61’)

I

+ .4, exp –j(~zz – 8,) + B, expj(fl~z – 6,’)
= ~itit

1 .(
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:.3)
!>. .

1
.. . . . . . . . . . . . . .

+.41 exp –j(~lz – ~J + Bl expj(~~z – 81’) 1

Since microwave crystal detectors used for such probe

measurements are usually very nearly square-law detec-

tors, it is desirable to find the square of I E,l .

[EU[Z=EU*XEU, where E.” denotes the complex con-

j ugate of EU.

.“. I l?.]’= ~ {2AJ3, Cos [(/3, + /3.)2 - (ar + 88’)]
r,s=l

+ A,’l. Cos [(/3, – ‘8,,)2 – (d, – 6,)]

+ -BrB. Cos [(& – /9,)2 – (8P’ – 6,’)]}. (4)

From this equation it will be seen that there is a

constant componer~t in the expression for I E,,l 2 vs z,

moreover there are components varying at a rate of

~d,, 26., (P,+6.,) and f~ –~.) radians/cnl. The ampli-

tude coefficient of these components are combinations

of .<], .42, . . . , .47, Bl, B2, . . . , BLtakentw oat a time.

of course, (4) re(iuces to the conventional expression

for standing wave:} in a single-mode waveguide if we

make all the coefficients except .4 ~ and BI zero. Thus

+ 2A1BI sin 8,’ sin 2,812

—– K-’(I + ] PI’) + 2K’] pl Cos(p,z+ +). (5)

B. Case of Perfectly Matched Waveguide

For a perfectly matched waveguide, Bl, Bz, . . . , Lll

are all zero and (4) becomes

I E. )’ = ~ { .-1,/41,Cos (6, - 8,) Cos (1?, - B,)z
7’,, =1

+ .4rA, sin (8, – 6,) sin (,B, – P,)z} . (6)

This equation shows that I E. \ 2 consists of a constant

component and cc~mponents varying periodically with

respect to z. Thus the periodic variations with respect

to z give us the key to determination of the relative

amplitudes of the component modes that are present.

C. Method of Calculating the Coe@cients

Eq. (4) can be shown to be equivalent to

I Eti 1’ = f(z) = PO + ~ (P, COSB,Z + Q, sin fl,z) (7)

where ~j is of the form (~, t~.), and coefficients PO,

Pj and Qi are functions of .4,, B,, ~, and 8,’.

The @j is shown from the properties of the wave-

g-uide. Thus if we find PO, P, and Q, from I EUI 2=f (z],
then we can find .-1z, B ~,6Z and 61’. In some cases knowing

even Po, PI and Q, may be sufficient.

The situation is analogous to the case of a complex

waveform in the time domain which is to be analyzed

into various frequency components. If the given func-

tion is periodic, then Fourier series expansion may be

used. If the given function is aperiodic, then using the

Fourier transform we can get the corresponding func-

tion in the frequency domain.

In the case under consideration, @,’s are not harmoni-

cally related; the function f(z) is not periodic but rather

‘{almost periodic.”2 This “almost periodicity” means

that given an arbitrarily small number cl, we can always

find a period Z1 such that If(z+zJ –f(z) [ S c1 or the

function will very approximately be repeated after a

certain period zI. For example, referring to Fig. 3, the

pattern is, to the first approximation, repeated after

about 7 cm. By using the h“ourier transform, one

should be able to arrive at various frequency compo-

nel]ts; the only clifficulty is that integration from — ~

to + ~ would have to be obtained. This requires that

j(z) be defined between these limits. This, however, is

not possible, as ~(z) is determined experimental] y for a

very limited range of z. For practical purposes, a method

which gives results with an accuracy greater than or

equal to that of experimental readings will be sufficient.

One such method is given by Lanczos.3

The method is essentially a numerical application of

the Fourier transform, using equidistant data. The total

number of observational data is assumed to be an odd

number 2N+ 1. The origin is chosen at (N+ l)th read-

ing. Observations are made at an interval of { cm. A

new variable z’ = z/~ is formed. Thus observations are

made at

Zk’=o, il, i2, ” “ ., f N. The readings at these

points are denoted by ,f, = f (zk’).

f(z’) = x (1’. cos O.z’ + Q. sin Otiz’) (8)
a=o, l,!,...

where O. =fl.. ~ and 00= O. The restriction on { is

given by

0.< ‘rr,

which is equivalent to applying the ‘<sampling theorem’)

of I nformatiou Theory to this case.

Let O.= r/N. t.where O <t. <N.

Let uk=f~+f–~ and T’~=fh–f–k, k =0, 1, 2, . - “ , N.

As the number of observations cannot be expected to

be large, the data has to be modified before applying

LIH. Buhr, “.%lmost Periodic Functions, ” Chelsea Publishing
Co., New York, N. Y,, pp. 32-33; 1951.

3 C. Lanczos, “Applied Arralysis,” Prentice-Hall, Inc,, New York,
N. Y., p. 268; 1956.
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Fourier sums. This can be done by multiplying U~ and

V~ by a weighting factor

~k and ~k are transformed into c~ and dk, where

(lo)

Symbol ~’ means that ~0 and ~.v enter the process

with half weight only.

These c~’s and db’s can be looked upon as a “line

spectrum” corresponding to integer values of t= k of the

continuous parameter ta.The wave number j!fa will

generally not correspond to an integer value of t., but

it will generally lie between t = i and t = i+ 1.

Let t.,corresponding to ~a, be equal to i+~ where i

is an integer and ~ a pure fraction. Then the peak

ordinate CK in the spectrum of ch vs t.becomes

The coefficient Pa in (8) is given by

P. = : X 1.6963. (12)

A similar procedure is used to find Q. by replacing

cm with da. Once P. and Q. are known it remains to de-

termine the complex mode coefficients .4 @l and B Ze–i$l’.

These coefficients can be found by writing the explicit

forms of P. and Q. in terms of ~1 t, Bl, 5[ and 82’ and

then solving the resulting simultaneous equations for

.41, Bl, 6, and 61’.

As an example consider a two-mode system

A12 + B12 + .422+ B# = P.

2A1Bj COS &’ + 2A2B1 COS (al’ + &) = PI

2.4 ~.4~ COS82 + 2BlB~ COS (&’ – 62’) = P2

2AIB1 Cos al’ = P3

2A,BZ COS (8, + 8,’) = P4

2AIB, sin 8,’ + 2A,B1 sin (81’ + 6,) == QI

2AI.42 sin (–~,) + 2B1B2 sin (til’ – 81’) = Qz

2AIBI sin al’ = Q~

2.4tBz sin (82 + 62’) = Q,.

(13a)

(13b)

(13C)

(13d)

(13e)

(13f)

(13g)

(13h)

(13i)

If the load is almost or perfectly matched, then all

coefficients except PO, P2, Q2 approach zero and we liave

.d12 + .4.22 = PO (14a)

2AIA2 COS 62 = Pz (14b)

2.41 Aa sin (–6s) = Q, (14C)

(15a)

and

tan62 =_@
(15b)

P, “

Eqs. (15a) and (15b) will give two values of .4,/.4 z,

which are reciprocals of each other. Let .4 JA z =s or

1/s where s> 1. This ambiguity is removed by noting

that due to attenuation in the guide, A ~ reduces more

quickly with distance than A I does. Thus by noting the

value of s at sections M and N and s’ at sections il[’

and N’ in Fig. 2, we can find value of .4 Ji4 z. Thus

A,
if s > s’, Az> .41 or — < 1.

.4,

For degenerate modes, the procedure suggested by

Ferrer and Torniyasu’ will be useful.

EXPERIMENT, WORK

The experimental work was carried out at about

9300 Mc. Rectangular waveguide was used, the dimen-

sions being chosen so that only TE1O and TEzo modes

propagated. The TEZO mode was excited by putting a

wire probe oriented along y axis in the center of the

waveguide and adjusting its length to obtain an arbi-

trary division of energy between the modes. For the

probe depth used in the experiment described below, it

turned out that approximately equal amplitudes of the

two modes were launched in the waveguicle.

The basic measurements were made with an HP-444A

untuned probe which was inserted successively in a

series of closely spaced holes in the broad face of the

measuring guide (see Fig. 1). A matched load was pre-

pared by inserting a wooden pyramid painted with car-

bon resistant paint in a waveguide. Insertion of a di-

electric slab in front of the matched load produced an

arbitrary reflecting load. Typical patterns of I EV 12 vs z

which were obtained with these loads, together with

that obtained with a short circuit, are shown in Figs.

2–4. From the set of readings plotted in Fig. 3, the

following values of Pl, etc., were calculated.

P, = 2.425 Q, = 1.154

P, = 1.274 Q, = – 2.48

P3 = 0.969 Q, = – 0.747

P4 = 0.321 Q, = – 1.188

A, = 0.783 .4! = 0.785

B1 = 0.781 B, = 0.783.

The analysis of the curve shown in Fig. 2 is quite simple

and the results obtained are

AI = 1.32 .4, = 1.00.
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Fig. l—Isometric view of [he mc.lsurement wa~-eguicle
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Fig. 2—{ E, I‘ vs : pattern for matched load.
B, --& =0.908 radian/cm.
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Fig. 3— ] EV ]2 vs s pattern for short-circuited waveguide.
~,= 1.783, 8,=0.874.
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Fig. 4— ] EY 12vs z pattern for an arbitrary load.



278 IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES Ally

Fig. 5—Movable dielectric slab phase-shifter.

The anal ysis of the I Ey ] 2 vs z pattern for the arbitrary

load, Fig. 4, gave the following results

A, = 2.31 A, = 0.71

B, = 0.168 B, = 0.42.

It may be seen from the above results that the condi-

tion of match can be identified by the fact that a simple

sinusoidal pattern exists in the longitudinal direction.

This suggests that for some purposes, where a computa-

tion of amplitudes is not necessary but a condition of

match is to be observed, an oscilloscopic representation

of the data might be used. A convenient way of obtain-

ing such data is to use a fixed probe position and shift

the phase between various modes.

A movable dielectric slab phase-shifter, Fig. 5, was

used for changing the phase between the two modes.

A potentiometer was attached to the drum which con-

trolled the position of the slab in the waveguide. The

voltage, determined by the setting of the potentiometer,

gave the horizontal deflection on a slow-speed oscillo-

scope. The output from the probe, after amplification,

was applied to the vertical defection plates. Thus the

pattern of I E. ] z vs slab position was obtained at a fixed

probe position. Such a pattern was recorded for a

matched load condition [see Fig. 6(a)]. This pattern

could subsequently be used as a comparison standard to

match unknown loads. Thus matching for two modes in

a waveguide is made easier.

CONCLUSION

A method of determining the mode content in a

general waveguide has been described. The usefulness of

the procedure lies in the fact that it can be used with

any kind of dispersive transmission system. The method

does not finally solve the problem of multimode analysis,

but it is felt that it gives a better understanding about

the operation of a multimode waveguide. The limitation

of the procedure lies in the fact that an enormous

amount of numerical calculation is involved even with

a small number of modes. By changing the phase be-

tween the various propagating modes, e.g., by a movable

dielectric phase-shifter, the pattern of I E. ] Z vs A6, at a

fixed probe position, can be displayed on an oscilloscope

which can at least tell us whether the waveguide is

matched or not.

(a)

(b)

Fig

(c)

6—(a) I Ev I‘ vs slab Dosition for matched load. (b) IE,, I z VS slab.; .,- . . .,, . ,
uosltlon for short-circuited wavesmide. (c) I E,, )z vs slab uosition
for an arbitrary load.

.,, .
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