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Analysis of Waveguide Modes by Standing-

Wave Pattern Measurements*

H. B. DAVEY, STUDENT MEMBER, IRE

Summary—A method of analyzing a multimode transmission
system is described, which is based upon the measurement of mean-
square electric field along a line parallel to the waveguide axis.
Although the analysis given is for a rectangular waveguide, the
method has the advantage that it can readily be adapted to all
types of transmission structures.

INTRODUCTION

N ANALYSIS of the complex modal amplitudes on
A waveguides, based upon measurement of the
transverse electric field, has been made by Forrer
and Tomiyasu.! Since their method is based upon a
numerical Fourier analysis, it is not suitable for trans-
mission structures which involve nonsinusoidal trans-
verse field functions. The method described in the
present paper is free from this limitation. It depends on
the fact that the various propagating modes, in general,
have different phase velocities. Due to this dispersion,
the electric field measured along a line parallel to the
waveguide axis will show a modulation effect. From the
numerical Fourier transform analysis of the resultant
field pattern, one can arrive at values of various co-
efficients for several modal amplitudes.

THEORETICAL

Consider the expression for [Eyl 2 as a function of z in
a rectangular waveguide.

. mT nwy .
E,t = K, sin cos e exp j(wt — Biz+ &)
where
—iBiC nrw
K, = 9P -—— for TM modes,
h? b
—jouC m
= Jous mm for TE modes;
& a

E,'=y component of the electric field for a particular
mode /;
B:=phase constant
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z=distance along the waveguide axis;
d;=1nitial phase difference.

The expression for B,.. applies both to TM,,, and TE,.,
modes, so the phase velocities of these two modes will
be same and there will be degeneracy. For other modes,
B/'s are not only different but also are not simply related.

In the analysis given below, degenerate modes are
designated by a single number per pair, the electric field
being the vector sum of the individual fields.

A. Case of Arbitrary Reflection

At a particular transverse site the ¥y components of
incident electric fields are given by

By, = Avexp jlot — iz + &)
By, = Asexp jlot — Boz + 82)
By = Aiexp jlot — Bis + 8)). (1)
The reflected fields are likewise given by

*E, = Biexpj(wt + Bz — 8()

*E,, = Bjyexp jlwt 4+ Bz — 87)

|

"By = Brexp jlot + Biz — 8/). (2)

The factors Ay, 4,, - - -, B, By, etc., consist of multi-
plication of a weighing factor depending upon the probe
position and the type of mode and the maximum ampli-
tude of the electric field for the particular mode. It is
important that none of these weighing factors be zero,
otherwise that particular mode for which the weighing
factor is zero will not be detected. If the mode patterns
are known, one can always select an axis for probing
which will give a reasonable amplitude to each of the
modes of interest; e.g., for a rectangular waveguide
supporting TE;, TEs and TEj; modes, one should
avoid locating the probe axis at a distance of a/2, a/3,
2a/3 from the narrow face of the waveguide. If the mode
patterns on a new waveguide structure are totally un-
known, two or three series of probing in the longitudinal
direction will help in locating the most suitable axis.
Here lies the main advantage of this method, for at least
something can be found out about the unknown mode
patterns on a new waveguide structure, though actual
mode ratios cannot be found.

Equations similar to (1) and (2) can be written for the
x component of the electric field and similar analysis
can be carried through.
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Total electric field in the y direction is given by

Ey= 2 Ep+ 20 Ey
l’A1 exp — j(Bz — 81) + Biexpj(6iz — 8,)

4t darexp — j(Bz — 82) + Baexp)(Bz — §.)
=l e

L*l— Arexp — j(Biz — 8;) + Brexpj(Biz — &/)

Since microwave crystal detectors used for such probe
measurements are usually very nearly square-law detec-
tors, it is desirable to find the square of 1E,,!

[E,,[ *=FE,*XE,, where E* denotes the complex con-
jugate of E,.

!

c LB P = 20 {24,Bcos [(8 + 80z — (5, + 6))

ra=1

+ A, dy cos [(8, — B.)z — (5, — 8,)]
+ B.B,cos [(8 — B)z — &/ — )]}, (4

From this equation it will be seen that there is a
constant component in the expression for \E,,]2 Vs 2,
moreover there are components varying at a rate of
28., 28, (B.+8,) and (B,—8B,) radians/cm. The ampli-
tude coefficient of these components are combinations
of 44, dy, -+, Ay, By, By, - - -, By taken two at a time.

Of course, (4) reduces to the conventional expression
for standing waves in a single-mode waveguide if we
make all the coefficients except 1, and B; zero. Thus

| By |2 = 422+ B2+ 24.By cos 8/ -cos 2612
+ 24,B;sin 8§ sin 281z

KX+ [ o)) + 2K2 p] cos (B2 + ¢). (5)

I

B. Case of Perfectly Matched Waveguide

For a perfectly matched waveguide, Bi, Bs, - -
are all zero and (4) becomes

')Bl

£

7
? = Z {;LALS cos (8, — &) cos (B8, — B,z
r,8=1

+ 4,4, 5sin (8, — 8,) sin (8, — B.)z}. (6)

This equation shows that IEyl2 consists of a constant
component and components varying periodically with
respect to 3. Thus the periodic variations with respect
to z give us the key to determination of the relative
amplitudes of the component modes that are present.

C. Method of Calculating the Coefficients
Eq. (4) can be shown to be equivalent to

\Eu2:][(5):P0+Z(PJCOSB_JZ+QJSinl§JZ) (7

where B, is of the form (B8,%8,), and coefficients Py,
P;and Q; are functions of 4, Bs, 6; and 4.
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The B; is shown from the properties of the wave-
guide. Thus if we find Py, P, and Q, from | E,|?=f(z),
then we can find .4, By, §;and ;. In some cases knowing
even Pq, P, and Q, may be sufficient.

The situation is analogous to the case of a complex
waveform in the time domain which is to be analyzed
into various frequency components. If the given func-
tion is periodic, then Fourier series expansion may be
used. If the given function is aperiodic, then using the
Fourier transform we can get the corresponding func-
tion in the frequency domain.

In the case under consideration, 8,’s are not harmoni-
cally refated; the function f(2) is not periodic but rather
“almost periodic.”? This “almost periodicity” means
that given an arbitrarily small number €;, we can always
find a period z; such that |f(z+zl) —f(z)| <e; or the
function will very approximately be repeated after a
certain period z;. For example, referring to Fig. 3, the
pattern is, to the first approximation, repeated after
about 7 cm. By using the Fourier transform, one
should be able to arrive at various frequency compo-
nents; the only difficulty is that integration from — «
to 4+ o« would have to be obtained. This requires that
f(2) be defined between these limits. This, however, is
not possible, as f(z) is determined experimentally for a
very limited range of z. For practical purposes, a method
which gives results with an accuracy greater than or
equal to that of experimental readings will be sufhcient.
One such method is given by Lanczos.?

The method is essentially a numerical application of
the Fourier transform, using equidistant data. The total
number of observational data is assumed to be an odd
number 2N 41, The origin is chosen at (N41)th read-
ing. Observations are made at an interval of { cm. A
new variable g’ =g/{ is formed. Thus observations are
made at

2z’ =0, =1, +£2, + N. The readings at these
points are denoted by fi=F(z").

&= 2

a=0,1,2,.--

(Po cos 0,8" + Qo 8in 6a3") (8)

where 6,=8,-{ and 0,=0. The
given by

restriction on { is

0. <,

ie., { < w/Ba (9
which is equivalent to applying the “sampling theorem”
of Information Theory to this case.

Let 8,=7/N-t, where 0 <t, <N.

Let Up=fi+fwand Vi=fi—f, £k=0,1,2,---, N.

As the number of observations cannot be expected to
be large, the data has to be modified before applying

2 H. Bohr, “Almost Periodic Functions,”
Co., New York, N. Y., pp. 32-33; 1951.

8 C. Lanczos, “Applied Analysis, " Prentice-Hall, Inc., New York,
N. Y., p. 268; 1956.
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Fourier sums. This can be done by multiplying Uy and
Vi by a weighting factor

sin (kw/N —
O'k——'“‘<’—/—21..6., U}c: Uk'o'k,
kr/N

Vk = Vk'o'k.
Uy and V, are transformed into ¢; and di, where

o ™
Cp == Z, Uk COSV ak

a=0 1
N—1 _ T

(Zk = Z V]c sin TV— ak. (10)
a=1 4

Symbol Y’ means that U, and Uy enter the process
with half weight only.

These ¢;'s and di's can be looked upon as a “line
spectrum” corresponding to integer values of =% of the
continuous parameter #,. The wave number §., will
generally not correspond to an integer value of £,, but
it will generally lie between t=1¢ and t=:4-1.

Let ¢,, corresponding to 8., be equal to ¢+ where i
is an integer and ¢ a pure fraction. Then the peak
ordinate ¢, in the spectrum of ¢ vs £, becomes

o = ci+ ¥/ e — ¢ (11)
The coefficient P, in (8) is given by
Cu
P, = - X 1.6963. (12)

A similar procedure is used to find Q. by replacing
¢o with d,. Once P, and Q, are known it remains to de-
termine the complex mode coefficients .4 /% and Be=?".
These coefficients can be found by writing the explicit
forms of P, and Q, in terms of A, Bj, §; and 8, and
then solving the resulting simultaneous equations for
Al, Bz, 67 and 51/.

As an example consider a two-mode system

A12 + 312 + 4422 + Bzg = Py (133)
2.41Bs cos 8y + 24:Bycos (8" + 82) = P1 (13b)
24144 cosds + 2B1Bycos (81 — 8y) = Py (13¢)

24,B;cos &) = Py (13d)

244Bscos (s + 8') = Py (13e)

241B2sin 8y’ + 2A4,B;sin (61 + 62) = Q1 (13f)
2414y sin (—85) + 2B1Bosin (5, — &) = Q2 (13g)
244Bysiné’ = Qs (13h)

24,Bysin (6 + 87) = Qu (130

If the load is almost or perfectly matched, then all
coefficients except Py, P2, Q; approach zero and we have

Al2 —I-‘ .422 = Po (14:1)
2:11142 CcOS 62 = Pz (14b)
2441142 sin (—62) = QZ (14(:)
" 2A41<4g = ’\/.ng + ng (15&)
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(15b)

tan §; =

Eqs. (15a) and (15b) will give two values of 4:/.d,,
which are reciprocals of each other. Let d;/d;=s or
1/s where s> 1. This ambiguity is removed by noting
that due to attenuation in the guide, .1, reduces more
quickly with distance than 4, does. Thus by noting the
value of s at sections M and N and s’ at sections M’
and N’ in Fig. 2, we can find value of /4, Thus

. A,

if s >, Ar> 4y or —> 1
42
A

ifS > S/, 442 > A41 or — < 1
<12

For degenerate modes, the procedure suggested by
Forrer and Tomiyasu® will be useful.

ExrERIMENTAL WORK

The experimental work was carried out at about
9300 Mc. Rectangular waveguide was used, the dimen-
sions being chosen so that only TE;, and TEj, modes
propagated. The TE; mode was excited by putting a
wire probe oriented along y axis in the center of the
waveguide and adjusting its length to obtain an arbi-
trary division of energy between the modes. For the
probe depth used in the experiment described below, it
turned out that approximately equal amplitudes of the
two modes were launched in the waveguide.

The basic measurements were made with an HP-444A
untuned probe which was inserted successively in a
series of closely spaced holes in the broad face of the
measuring guide (see Fig. 1). A matched load was pre-
pared by inserting a wooden pyramid painted with car-
bon resistant paint in a waveguide. Insertion of a di-
electric slab in front of the matched load produced an
arbitrary reflecting load. Typical patterns of lEl,! lvsz
which were obtained with these loads, together with
that obtained with a short circuit, are shown in Figs.
2-4. From the set of readings plotted in Fig. 3, the
following values of Py, etc., were calculated.

Py = 2.425 0: = 1.154
Py = 1.274 0, = — 2.48
Py = 0.969 0s = — 0.747
Py = 0321 0, = — 1.188
A; = 0783 4, =0.785
By = 0.781 B, = 0.783.

The analysis of the curve shown in Fig. 2 is quite simple
and the results obtained are

:’11 == 132 Az = 100
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Fig, 1—Isometric view of the measurement waveguide.
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Fig. 2—| E,|? vs s pattern for matched load.
Bi-—B82=0.908 radian/cm.
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RELATIVE AMPLITUBE ac/:y/

2z

SworRT-CIRCUITED — GUIDE

RELATIVE AMPLITUDE of [E
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Fig. 3—| E,|? vs 5 pattern for short-circuited waveguide.
8,=1.783, B2=0.874.

ArBITRARY LoaD

a s/ 2 3 + 5 6 7

Distance  Atone ‘z

8 8 o H & 13 4 5 i6 ems
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Fig. 4—[E,|? vs 5 pattern for an arbitrary load.
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5%

Fig. 5—Movable dielectric slab phase-shifter.

The analysis of the }Eyl % vs z pattern for the arbitrary
load, Fig. 4, gave the following results

Ay = 2.31 As = 0.71
B, = 0.168 By, = 0.42.

It may be seen from the above results that the condi-
tion of match can be identified by the fact that a simple
sinusoidal pattern exists in the longitudinal direction.
This suggests that for some purposes, where a computa-
tion of amplitudes is not necessary but a condition of
match is to be observed, an oscilloscopic representation
of the data might be used. A convenient way of obtain-
ing such data is to use a fixed probe position and shift
the phase between various modes.

A movable dielectric slab phase-shifter, Fig. 5, was
used for changing the phase between the two modes.
A potentiometer was attached to the drum which con-
trolled the position of the slab in the waveguide. The
voltage, determined by the setting of the potentiometer,
gave the horizontal deflection on a slow-speed oscillo-
scope. The output from the probe, after amplification,
was applied to the vertical defiection plates. Thus the
pattern of IEZ,] 2 vs slab position was obtained at a fixed
probe position. Such a pattern was recorded for a
matched load condition [see Fig. 6(a)]. This pattern
could subsequently be used as a comparison standard to
match unknown loads. Thus matching for two modes in
a waveguide is made easier.

CoNCLUSION

A method of determining the mode content in a
general waveguide has been described. The usefulness of
the procedure lies in the fact that it can be used with
any kind of dispersive transmission system. The method
does not finally solve the problem of multimode analysis,
but it is felt that it gives a better understanding about
the operation of a multimode waveguide. The limitation
of the procedure lies in the fact that an enormous
amount of numerical calculation is involved even with
a small number of modes. By changing the phase be-
tween the various propagating modes, e.g., by a movable
dielectric phase-shifter, the pattern of lEyl 2 yvs Af, at a
fixed probe position, can be displayed on an oscilloscope
which can at least tell us whether the waveguide is
matched or not.
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(b)

()

Fig. 6—(a) | E,|? vs slab position for matched load. (b) | E,|? vs slab
position for short-circuited waveguide. {c) | E,|? vs slab position
for an arbitrary load.
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